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Abstract

We evaluate the performance of the Community Atmosphere Model’s (CAM) spec-
tral element method on variable resolution grids using the shallow water equations in
spherical geometry. We configure the method as it is used in CAM, with dissipation of
grid scale variance implemented using hyperviscosity. Hyperviscosity is highly scale5

selective and grid independent, but does require a resolution dependent coefficient.
For the spectral element method with variable resolution grids and highly distorted el-
ements, we obtain the best results if we introduce a tensor-based hyperviscosity with
tensor coefficients tied to the eigenvalues of the local element metric tensor. The ten-
sor hyperviscosity is constructed so that for regions of uniform resolution it matches10

the traditional constant coefficient hyperviscsosity. With the tensor hyperviscosity the
large scale solution is almost completely unaffected by the presence of grid refinement.
This later point is important for climate applications where long term climatological av-
erages can be imprinted by stationary inhomogeneities in the truncation error. We also
evaluate the robustness of the approach with respect to grid quality by considering un-15

structured conforming quadrilateral grids generated with a well-known grid-generating
toolkit and grids generated by SQuadGen, a new open source alternative which pro-
duces lower valence nodes.

1 Introduction

In climate and weather forecast applications there is an increased demand for variable-20

resolution capabilities. This demand is motivated by the need to resolve various tempo-
ral and spatial scales in forecast and regional climate studies with limited computational
resources. Several approaches can be employed to this end including nesting tech-
niques, multiphysics modeling, and multiresolution simulations, recently overviewed in
Ringler et al. (2011).25
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Here we focus on the multiresoluton approach made possible by the spectral ele-
ment method (SEM). We use global spherical grids, constructed to have uniform high
resolution over a region of interest, uniform low resolution over the rest of the globe,
and a transition region between them. The SEM has a long history of running on highly
unstructured grids, including spherical geometry with climate applications (Fournier5

et al., 2004; St.-Cyr et al., 2008; Baer et al., 2006; Marras et al., 2014). Here our
goal is to evaluate and improve the multiresolution capabilities of the SEM formula-
tion from the High-Order Method Modeling Environment (HOMME) recently adopted
as the default dynamical core by the Community Atmosphere Model (CAM) (Dennis
et al., 2012). HOMME uses a locally conservative/mimetic formulation from Taylor and10

Fournier (2010) and relies on a constant coefficient hyperviscosity term to both dissi-
pate energy near the grid scale and to damp grid scale modes with spurious propaga-
tion (Ainsworth and Wajid, 2009). This hyperviscosity operator is not suitable for vari-
able resolution grids, and thus we consider two resolution-aware extensions. The first
is the straightforward extension of allowing the hyperviscsoity coefficient ν to depend15

on the local element length scale. This approach was used in Zarzycki et al. (2014a, b)
for realistic CAM simulaitons. Here, we use the shallow water equations to show some
deficiencies with this approach, and then show that better results are obtained with
a tensor-based hyperviscosity operator which can better represent both length scales
within non-square spectral elements. We evaluate this approach using the shallow wa-20

ter equations on the sphere with the two-dimensional version of HOMME’s spectral
element dynamical core. There have been other modifications of the viscosity and hy-
perviscosity operators. For example, Yu et al. (2014) uses a flow-depended coefficient
for the Laplacian. In Dobrev et al. (2012) several tensor coefficient viscosity operators
were considered including a formulation where directional viscosity coefficients were25

chosen to depend on directional length scales of a deformed Lagrangian volume. Here
we follow a similar approach, only the length scales come from the deformation of the
elements, especially those elements in the grid transition region.
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The mimetic SEM requires conforming quadrilateral grids. To generate variable-
resolution grids, we employ a well-known grid-generating toolkit, CUBIT (https://cubit.
sandia.gov). In the grid-transition region, the CUBIT grids have many valence 6 nodes
(corner nodes shared by 6 elements). For grids in spherical geometry, it is possible to
construct transition regions with mostly valance 5 nodes, and such elements will have5

less acute angles. To generate grids with low valence nodes, we use the Spherical
Quadrilateral Grid Generator (SQuadGen, http://climate.ucdavis.edu/squadgen.php).
This toolkit uses a paving technique (Blacker and Stephenson, 1991) in combination
with a set of low-valence tiles to generate smooth quadrilateral grids based on cubed-
sphere geometry. Regions of enhancement are determined via a user-specified im-10

age file which is mapped onto a cubed-sphere grid. Grid smoothing is performed via
straightforward application of spring dynamics in 3-D geometry (Persson and Strang,
2004). Grids obtained via this technique exhibit several improved characteristics, in-
cluding greater uniformity in the transition region, and elements with angles that are
closer to 90 ◦.15

In this study we use multiresolution grids with a single region of quasi-uniform high
resolution, ∆xhigh, which transitions to a quasi-uniform grid of low resolution, ∆xlow,
covering most of the globe.

While evaluating the model’s performance, it is natural to compare the multiresolution
simulation with the corresponding ∆xlow and ∆xhigh uniform grid simulations. Motivated20

by climate applications, and following Weller et al. (2009); Ringler et al. (2011) we
evaluate ∆xlow/∆xhigh variable-resolution simulations with two criteria:

1. Refinement does no harm to the global scales. For the shallow water equation
initial value problem, at short times, it is reasonable to expect many features in the
refined region would not be contaminated by information from the low resolution25

region. In contrast, for longer times we expect all features to be influenced by
information from both the low and high resolution regions. So, in general, global
errors should depend on ∆xlow and may not be improved by the presence of
a ∆xhigh resolution region. However, they should not be worsened by the presence
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of refinement and we thus expect global errors in a multiresolution simulation to
be as low as those obtained by a uniform ∆xlow simulation.

2. Local scales are resolved in the refined region. The purpose of the multiresolu-
tion approach in climate modeling is not to reduce the initial value problem error,
but to resolve features of interest such as hurricanes, eddies, or topographically5

driven features in select regions at a lower cost. We thus expect that in the refined
region, the multiresolution simulation can resolve the same scales as the uniform
∆xhigh resolution simulation. With hyperviscosity, this requires a resolution aware
formulation which locally matches what would be used in a uniform resolution
simulation.10

In the study we use the popular set of shallow water test cases on the sphere com-
piled by Williamson et al. (1992) to show that the SEM satisfies both requirements
when tensor hyperviscosity is used. We show that tensor hyperviscosity is both more
accurate and more robust with respect to grid quality. The rest of the paper is organized
as follows: In Sect. 2 we introduce two dissipation mechanisms, scalar and tensor hy-15

perviscosity, in Sect. 3 we discuss grid refinement techniques, in Sect. 4 we describe
shallow water test cases, and in Sect. 5 we present numerical results.

2 Hyperviscosity formulations

In many climate models a hyperviscosity term is added to the right hand side of the dy-
namical equations for both physical and numerical reasons. Hyperviscosity is preferred20

over regular viscosity because it is more scale selective. It strongly damps grid scale
modes while having less of an impact on the resolved large scale modes. To intro-
duce the various types of hyperviscosity that will be considered here, we first consider
a model equation containing only the hyperviscosity operator

Qt = −ν∆2Q, ν > 0 (1)25
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acting on scalar fields with a constant-coefficient ν. The tensor formulation replaces
ν∆2 by (∇ · τ∇)∆ for a symmetric positive definite matrix τ. Our intention is to derive
a formulation for τ that is suitable for uniform and quasi-uniform grids and can be
extended to non-uniform grids.

We start by writing the equations in weak form, as a system of integral equations,5 ∫
Ω

φ1Qt =
∫
Ω

∇φ1 · τ∇q, (2)

∫
Ω

φ2q = −
∫
Ω

∇φ2 · ∇Q. (3)

Here subscript t denotes differentiation w.r.t. time and Ω is the problem domain, which
in our case will be the sphere of radius R. This system of equations is discretized by the10

standard SEM and solved for all SEM test functions φ1 and φ2. We first decompose
the domain Ω into a set of quadrilateral elements on the surface of the sphere, Ωm,
m = 1, . . . ,M, such as in Fig. 1, and then write∑
m

∫
Ωm

φ1Qt =
∑
m

∫
Ωm

∇φ1 · τ∇q, (4)

∑
m

∫
Ωm

φ2q = −
∑
m

∫
Ωm

∇φ2 · ∇Q. (5)15

Each term in this sum is then written as an integral over the reference element
Ωref = [−1,1]× [−1,1]. We define r (x;m) as the map from Ωref to Ωm, with r ∈Ωm
a point on the sphere and x = (x1,x2) ∈Ωref. We require this map to be differentiable
and invertible, and further define20

D = ∂r/∂x (6)
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where D is a two by two matrix whose columns are the covariant basis vectors ex-
pressed in spherical coordinates. The map and analytic expressions for D are given in
the appendix. The integral over each spherical element Ωm can then be written with
respect to Ωref, using derivatives with respect to the reference element coordinates,∫
Ωm

∇φ · τ∇q =
∫

Ωref

( ∂φ
∂x1
∂φ
∂x2

)T

D−1τD−T
( ∂q

∂x1
∂q
∂x2

)
det(D)dx1dx2. (7)5

where det(D)dx1dx2 is the transformed area measure, τ is the tensor expressed in
spherical coordinates.

Note that the discrete operator will conserve mass,
∫
Q, since the change in mass is

obtained by taking test function φ1 = 1 and then the right hand side of Eq. (4) will be10

zero if we ensure ∇1 = 0.
We now consider the eigenvalues of the metric tensor and its inverse,

DTD = E
(
λ1 0
0 λ2

)
ET, D−1D−T = E

(
λ−1

1 0
0 λ−1

2

)
ET, (8)

with orthonormal matrix E whose columns are the basis vectors which diagonalize the15

Laplace operator. For any practical grid, both D and D−1 are well defined and hence
the symmetric metric tensor is guaranteed to have such an eigenvalue decomposition
with positive eigenvalues. We note that these two eigenvalues can be used to define
the two length scales associated with each element Ωm. For the special case of a grid
of rectangular elements in Cartesian geometry of size lx × ly , we have that E is the20

identity matrix and

λ1 =
(
lx/2

)2 λ2 =
(
ly/2

)2
. (9)

For general possibly distorted element, we define its two length scales by 2
√
λ1 and

2
√
λ2.25
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2.1 Constant-coefficient hyperviscosity

The traditional constant coefficient hyperviscosity is obtained by taking τ = νI, with the
identify matrix I. For uniform resolutions with an average grid spacing of ∆x, often
ν = c0(∆x)3.2, for some constant c0 > 0. This scaling is obtained by experimentation
and is found to be effective for several different dynamical cores over a wide range5

of resolutions (Boville, 1991; Takahashi et al., 2006; Dennis et al., 2012). We take
a slightly more general form and allow ν = c0(∆x)s for a scaling parameter s. The con-
stant coefficient hyperviscosity is used for quasi-uniform grids, where we follow the con-
vention of defining ∆x by the average number of degrees of freedom on the equator.
For square elements, lx = p∆x where p is the polynomial order of the basis functions10

in the SEM.
In order to motivate how we generalize this operator to a full tensor, we first express

τ = νI in the basis which diagonalizes the Laplace operator (the local element basis
defined by E). Some algebra shows that

E−1D−1τD−TE−T =

(
νλ−1

1 0
0 νλ−1

2

)
.15

Below, we will ensure that the more general tensor formulations retain this scaling in
regions where the grid has uniform resolution λ1 ' λ2.

2.2 Scalar hyperviscosity

For scalar hyperviscosity, we again take τ = νI and now allow ν to vary in space. The20

natural choice is to use the same scaling as with the constant-coefficient operator,
ν = c0(∆x)s, but with ∆x now chosen locally for each element. To preserve the scaling
for the constant-coefficient operator, but to also ensure that the coefficient does not
become too small (and thus provide insufficient dissipation), we use Eq. (9) and ap-
proximate the resolution locally by taking lx = 2(max{λ1,λ2})

1/2, ∆x = lx/p. For scalar25
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hyperviscosity, this tensor scales according to

E−1D−1τD−TE−T =

(
νλ−1

1 0
0 νλ−1

2

)
, ν = c0(∆x)s.

On a Cartesian grid with square elements, λ1 = λ2 = (lx/2)2 and so the scalar and
constant-coefficient operators are identical. For a quasi-uniform grid, where λ1 ' λ2 '5

(lx/2)2, the scalar and constant-coefficient operators will have the same scaling with
resolution.

2.3 Tensor hyperviscosity

Now consider a grid with only rectangles of size lx � ly . Based on our expected scal-
ing hyperviscosity with resolution, we note that scalar hyperviscosity above would give10

us the desired amount of dissipation in the x direction, but will have excessive dissi-
pation acting in the y direction. The natural choice for a grid of rectangles is a tensor
coefficient,

τ =
(
ν1 0
0 ν2

)
ν1 = c0(∆x)s, ν2 = c0(∆y)s. (10)

15

For a grid of pure rectangles, D is diagonal and E = I, so τ expressed in the E basis is
given by

E−1D−1τD−TE−T =

(
ν1λ

−1
1 0

0 ν2λ
−1
2

)
. (11)

We use this same formulation for unstructured grids by defining the two locally varying20

element length scales as in Eq. (9) and taking ν1 = c0(2
√
λ1/p)s and ν2 = c0(2

√
λ2/p)s.

On a Cartesian grid of pure rectangles, the scalar and tensor operators are identical.
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For a quasi-uniform grid of rectangles where λ1 ' (lx/2)2 and λ2 ' (ly/2)2, the scalar
and tensor operators will have the same scaling with resolution.

For direct comparison, we summarize the three different approaches:

– Constant-coefficient: For quasi-uniform grids with average grid spacing ∆x

τ = νI = DE

(
νλ−1

1 0
0 νλ−1

2

)
(DE)T

5

ν = c0(∆x)s

– Scalar: ν = ν(r ) depends on local element length scales

τ = νI = DE

(
νλ−1

1 0
0 νλ−1

2

)
(DE)T

ν = c0(∆x)s10

∆x = 2
√

max{λ1,λ2}/p

– Tensor: τ depends on local element length scales

τ = DE

(
ν1λ

−1
1 0

0 ν2λ
−1
2

)
(DE)T

ν1 = c0(∆x)s,15

∆x = 2
√
λ1/p

ν2 = c0(∆y)s,

∆y = 2
√
λ2/p

4090

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4081/2014/gmdd-7-4081-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4081/2014/gmdd-7-4081-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 4081–4117, 2014

The SEM on variable
resolution grids

O. Guba et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For a smoothly deformed grid, the matrix entries of τ will be smooth functions over
the domain Ωm. For our discrete grids, we ensure τ is continuous across element
edges by applying the standard SEM projecting operation to each entry of τ. We further
reduce variations in τ by computing it only at element corner points, forming a bilinear
fit to these corner values, and using this bilinear approximation at all nodes within the5

element.

2.4 Hyperviscosity acting on vector fields

In our method, we represent vector fields u in spherical coordinates, but care must be
taken not to differentiate individual vector components when represented in spherical
coordinates since they are multiply valued at the poles. Instead we transform u from10

spherical to Cartesian coordinates and solve Eqs. (4–5) for each Cartesian component
of velocity field, and then transform the result back to spherical coordinates.

3 High and low connectivity conforming quadrilateral grids on the sphere

The mimetic formulation of the SEM we are using requires conforming quadrilateral
grids. The cubed-sphere is a popular way to construct these grids on the sphere with15

quasi-uniform resolution. An inscribed cube is projected onto the surface of the sphere
and each panel is further subdivided into a grid of elements, as shown in Fig. 1.

For multiresolution, we consider grids with a single refined region over an area of
interest. We define a coarse resolution ∆xlow and fine resolution ∆xhigh. We restrict
ourselves to choices ∆xhigh = ∆xlow/N, N = 2,4 and 8. Starting from a cubed-sphere20

grid with resolution ∆xlow, the region under refinement is substituted by uniform ele-
ments with ∆xhigh, as shown on Fig. 2. The approximate placement of the transition
region is colored grey. For each N, we generate a family of grids with different low
resolution regions ∆xlow. Following Ringler et al. (2011), we refer to these family of
grids as ×1, ×2, ×4 and ×8. The ×1 family is the set of uniform cubed-sphere grids25
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with resolutions ranging from 3 to 0.5◦. The ×2 family (shown in Fig. 3) is similar, but
each ×2 grid has a refined region with twice the resolution (N = 2). The ×4 family has
a refined region with 4 times the resolution (N = 4) and the ×8 family have N = 8.

It is nontrivial to construct the transition region. We need to avoid hanging nodes
and prefer the elements to be as close to squares as possible. In Fig. 4, we provide5

two example ×8 grids with the same ∆xlow = 3◦. Here we represent two approaches
to construct the transition region. Both are based on periodic templates, as seen in
Fig. 5. The transition region in Fig. 5a is constructed by CUBIT, a grid-generating soft-
ware for complex geometries in two and three dimensions (https://cubit.sandia.gov).
Figure 5b contains the transition generated by SQuadGen. SQuadGen was devel-10

oped to generate two-dimensional refined spherical grids based on a cubed-sphere
(http://climate.uccdavis.edu/squadgen.php).

As seen in Fig. 5, the transition region in Fig. 5a contains nodes of higher valence
comparing to the similar region in Fig. 5b. In this context, valence of a node is a number
of edges it is connected too. Node valence greater than 4 results in quadrilaterals with15

more acute angles and more distorted elements, and thus lower valence grids are
usually preferred. In Fig. 5a, most nodes are of valence 3–6, with a few of valence 7. In
Fig. 5b, most nodes are of valence 3–5 with a few nodes of valence 6. For the approach
used in Fig. 5a it is possible to avoid valence-7 nodes altogether with less automated,
more user-dependent procedure, but not valence-6 nodes.20

After the transition has been constructed, it is standard procedure to apply a smooth-
ing algorithm to further improve grid quality. SQuadGen employs the algorithm of Pers-
son and Strang (2004) with a uniform spring force function. Moreover, the user can
choose a halo size around the inner and outer boundaries of the transition region,
in terms of graph distances. This halo and is then used to define a region where25

smoothing will be applied. To investigate the performance of our resolution aware hy-
perviscosity operators, we take two extremes: Non-smooth grids with higher valence
nodes generated by CUBIT, and smoothed grids with lower valence nodes generated
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by SQuadGen. We call the former high-connectivity (or highly distorted) grids and latter
low-connectivity grids.

4 Shallow-water test cases

The shallow water equations on a rotating sphere are given by

∂u
∂t

+ (ζ + f )k ×u+∇
(

1
2
u2 +g(h+b)

)
= −∇ · τ∇∆u (12)5

∂h
∂t

+∇ · (hu) = −∇ · τ∇∆h. (13)

Here h is the fluid thickness, u represents velocity, ζ = k · ∇×u the vorticity, f is the
Coriolis parameter, g is gravity, and b denotes bottom topography. The equations are
discretized following Taylor and Fournier (2010) with the hyperviscosity operator dis-10

cretized as per Sect. 2. We take p = 3 for a fouth order accurate spatial discretization
and use the 2nd order accurate Leapfrog–Trapezoidal timestepping method.

For our studies, we choose two standard shallow water test cases from Williamson
et al. (1992), test case 2 (TC2) and test case 5 (TC5). TC2 represents a global steady
state zonal geostrophic flow. Since the analytical solution is known, TC2 is often used15

to investigate convergence rates. The solution is very smooth, resulting in small errors,
but the errors are very sensitive to local fluctuations in truncation error such as caused
by grid irregularities. Following Ringler et al. (2011) we run TC2 for 12 simulation days
instead of the originally proposed 5 days, in order to allow longer time for the error
growth to disrupt the steady state solution.20

TC5 consists of a more realistic zonal flow over an isolated mountain run for 15 days.
Error measures are obtained from a high resolution reference simulation. Establishing
convergence rates is difficult as the rate decreases to zero as the errors approach the
uncertainty in the reference solution. Instead, global errors are used primarily to mea-
sure the impact of the refined region. TC5 has much larger errors than TC2 which are25
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less sensitive to small fluctuations in the local truncation error. In TC5 we examine the
vorticity which contains small scale structures that are only captured at high resolution.
We use the vorticity results to ensure that these structures can also be captured within
the high resolution region of a variable resolution grid.

One of the purposes of this study is to confirm that in the SEM with hyperviscosity,5

the large scale errors are not harmed by the presence of refinement and thus are pri-
marily controlled by coarse resolution ∆xlow. For this, we collect a series of grids with
×2, ×4, and ×8 refinements. For both TC2 and TC5, the refined region covers a circle
with coordinates λ = 3π/2, θ = π/6 and radius π/9. This placement is centered over
the TC5 mountain. We summarize characteristics of the grids in Table 1. In Table 210

we summarize some parameters for simulations in Figs. 6–10. Resolutions ∆xlow and
∆xhigh are computed according to formula for an equatorial uniform resolution, consid-
ering that the whole sphere is covered by corresponding large or small elements.

5 Numerical results

5.1 Grid and hyperviscosity sensitivity in TC215

We present error plots for the TC2 height field h after 12 days in Fig. 6. The error

∆h = hnumerical −hanalytic (14)

is contoured for several different meshes all with a relatively low ∆xlow = 3◦ resolution.
Part a contains a plot for a uniform resolution and constant-coefficient hyperviscosity.20

Plots b and d are simulations with the scalar hyperviscosity on ×8 grids. Plots c and e
are simulations with the tensor hyperviscosity on ×8 grids.

We first note that the errors are quite small relative to the height field (which ranges
from 1000 m to 3000 m). The height field is not plotted since it would be identical to the
analytic solution in Williamson et al. (1992). For the uniform grid with constant coeffi-25

cient hyperviscosity, the error is quite uniform with no indication of any grid sensitivity.
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There is no visible m = 4 mode that might be expected because of the cubed-sphere
grid.

To investigate performance and robustness of two dissipation mechanisms, we
chose the two ×8 grids shown in Fig. 4: a highly distorted unsmoothed grid generated
by CUBIT, deg3-×8-highconn, and a grid with low-connectivity nodes and selectively5

applied smoothing generated by SQuadGen, deg3-×8-lowconn. Both the ×8 grids have
the same low resolution region as the uniform grid, and thus the errors in the ×8 grids
should be equal or lower than the errors in panel a. This is obviously not the case when
scalar hyperviscosity is used, as seen in panels b and d. Those results are contami-
nated with significant numerical noise with larger errors than panel a. This is even true10

in the Southern Hemisphere, away from the region of local refinement. Comparing the
distorted grid (panel b) with the low connectivity grid (panel d), we see that the scalar
hyperviscosity has some grid sensitivity, as the better quality grid in panel d shows
more zonal contours similar to panel a and somewhat less noise the refined mesh re-
gion, although panel d does have larger minimum and maximum errors (given in the15

figure caption) then panel b. Both panels b and d have minimum and maximum errors
significantly larger than panel a.

Contrary to this, results using the tensor coefficient hyperviscosity are very close
to panel a and much less sensitive to the different types of refinement. The minimum
and maximum errors with either the distorted grid (panel c) or the low connectivity grid20

(panel e) are slightly less than the values obtained on the uniform grid (panel a). In both
panels c and e, the error contours in the Southern Hemisphere are almost identical
to panel a. In the Northern Hemisphere, the errors are sensitive to the presence of
refinement, but are actually lower in this region than with panel a. Thus with the tensor
hyperviscosity, the presence of mesh refinement does no harm to the solution and25

actually results in a minor local reduction in the error.
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5.2 Vorticity in TC5

We now examine the vorticity field for TC5. The vorticity after 15 days is plotted in
Fig. 7. A closeup of the region over the TC5 mountain is shown in Fig. 8. In both
figures, panel a shows a low resolution uniform mesh result, and panel b shows the
reference solution from computed on a uniform high resolution grid. Note the sharp5

gradient in the flow that is well resolved in our reference solution but not present in the
low resolution result.

We show results computed using locally refined grids in Figs. 9 through 10. Based
on the results presented for TC2, here we compare the worst and best performing
extremes: scalar hyperviscosity running on the highly distorted ×8 mesh in Fig. 4a and10

to tensor hyperviscosity on the low connectivity ×8 mesh in Fig. 4b.
The vorticity is plotted over the mesh refinement region for these two simulations

in Fig. 9. The computation with scalar hyperviscosity develops unphysical oscillations
which are not present in the tensor hyperviscosity result or reference solution. Figure 9b
shows a very smooth field across the highly non-uniform transition region and the sharp15

gradient that is present in Fig. 8b is resolved without numerical noise. Note that exact
matching of Figs. 8b and 9b is not expected because the reference solution used a grid
with three times finer resolution then the finest resolution used in the ×8 grids.

To quantify these observations, we plot the error in the vorticity,

∆ζ = ζnumerical − ζreference (15)20

field in Fig. 10. We show the error for the two ×8 simulations as well as a uniform
low resolution simulation. The error is computed using our high resolution reference
solution as an approximation to the exact solution. The noise seen in the scalar hy-
perviscosity vorticity field (Fig. 9) is more evident throughout the refined region in the25

vorticity error plot (Fig. 10b). With the tensor viscosity on the low connectivity grid,
Fig. 10c shows very little noise in the refinement region and the mesh transition region.
In addition, the error is substantially reduced in the refinement region as compared to

4096

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4081/2014/gmdd-7-4081-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4081/2014/gmdd-7-4081-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 4081–4117, 2014

The SEM on variable
resolution grids

O. Guba et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the low resolution uniform grid solution (Fig. 10b). The fact that the error after 15 days
in this region can be reduced by local mesh refinement suggests that the solution con-
tains standing features induced by the mountain which benefit from mesh refinement
and are not sensitive to the solution in the rest of the domain where both grids have
the same ∆xlow resolution. In fact, the improved resolution of these standing features5

leads to slightly less error that is obtained by the global ∆xlow resolution grid.

5.3 Convergence under grid refinement

We now present mesh convergence results for several choices of local refinement. We
use our best configuration, tensor hyperviscosity running with low-connectivity grids.
We compare the convergence properties of the method with uniform grids using con-10

stant coefficient hyperviscosity, uniform grids using tensor coefficient hyperviscosity,
the ×2 family of grids, the ×4 family of grids and the ×8 family of grids. The ×2, ×4 and
×8 simulations all use tensor hyperviscosity.

The global l2 errors for the TC2 height field for all these families of grids are shown in
Fig. 11. We use the relative l2 defined in Williamson et al. (1992). As noted in Sect. 2.1,15

the hyperviscosity scaling with resolution is typically chosen as s = 3.2. For TC2, we
instead choose s = 4 so that the hyperviscosity term goes to zero at a 4th order rate
and we can confirm the 4th order accuracy of our p = 3 SEM spatial discretization.
For TC2 mesh refinement adds no value to the simulation, and as we saw in Sect. 5.1
it can lead to a slight reduction in the local error but no reduction in the error away20

from the refinement region. We thus examine convergence with respect to ∆xlow for
each family of grids. As expected, the uniform resolution simulations with 4th order
constant-coefficient hyperviscosity demonstrate 4th order convergence, with the tensor
and scalar hyperviscosity results nearly identical. Similar results are obtained for the
×2, ×4 and ×8 family of grids. The error is completely determined by ∆xlow for all grids,25

and all grids show 4th order convergence under mesh refinement with respect to ∆xlow.
Thus the presence of mesh refinement, with refinements as much as 8x, does no harm
to the global errors.
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The global l2 errors for the TC5 height field for all these families of grids are shown
in Fig. 12, again plotted as a function of ∆xlow and normalized as in Williamson et al.
(1992). For TC5, we return to the conventional hyperviscosity resolution scaling of
s = 3.2. For TC5, we compute the l2 errors from our high resolution reference solution.
The convergence rates are lower in this case due to the fact that the mountain is not5

smooth and the uncertainty in the reference solution. We first note that for uniform
resolution grids, the constant coefficient hyperviscosity performs nearly identical to the
tensor coefficient hyperviscosity. For TC5 we also see that for grids with the same
∆xlow, the global l2 error is slightly reduced by the presence of mesh refinement, as
conjectured in Sect. 5.2. The effect is small, and fully captured by the ×2 grid with twice10

the resolution over the TC5 mountain. Further local refinement in the ×4 and ×8 grids
does not further improve the error. Thus in this case, the presence of mesh refinement
does no harm to the global errors and in some special cases can decrease global error.

6 Conclusions

We compared two resolution aware hyperviscosity operators for the SEM running on15

unstructured grids with a region of local mesh refinement: a conventional scalar ap-
proach based on a single length scale for each element, and a tensor approach that
respects the resolution scaling of both length scales within each element. In both shal-
low water test cases 2 and 5, the scalar approach had noticeable noise and oscillations
near regions of local mesh refinement which was not present with the tensor formula-20

tion. Results for both formulations were sensitive to the grid quality, as shown by com-
paring results on a highly distorted grid with sharp mesh transitions and a smooth grid
with less acute angles due to its lower valence nodes. But in TC2, the tensor formula-
tion showed less grid sensitivity and obtained excellent results on both grids.

When running with tensor hyperviscosity in the SEM, the presence of local mesh re-25

finement in TC2 had no impact on the global errors. The SEM obtained its formal order
of accuracy for all grids tested (up to 8x regional refinement). In TC5, with refinement
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over the mountain, the presence of refinement again did no harm to the global errors
and actually resulted in a small improvement. Asymptotically, the global errors were
controlled by the coarse resolution and the locally refined meshes obtained the same
convergence rates as the global uniform meshes.

The tensor and scalar hyperviscosity operators were constructed to be resolution5

aware and to preserve the resolution scaling often used with uniform grids. In a high
resolution region of quasi-uniform elements, the resolution aware operators are very
similar to the SEM’s well proven constant coefficient operator. Hence we expect that
within the high resolution region of a locally refined mesh, the SEM can locally resolve
the same types of structures that the uniform high resolution grid can resolve. This was10

verified by looking at steep gradients in TC5 and comparing to coarse and high uniform
resolution solutions.

Appendix A: An element-local map for quadrilaterals on a sphere

Numerical methods for the sphere based on cubed-sphere grids need to define a map
r (x) from the reference element to the sphere (in the case of finite element methods) or15

from each cube face to the sphere for finite difference or finite element methods. Most
approaches use the equidistant central projection (Sadourny, 1972), the equiangular
central projection (Rancic et al., 1996), or their combination (Fournier et al., 2004). All
three of these approaches were compared in Nair et al. (2005), where the equiangular
mapping was found to be the most accurate. However, all three aforementioned projec-20

tions are based on an inscribed cube and cannot correctly treat elements lying across
cube edges. In particular, for an edge of such an element, the reference element maps
for the two elements which share this edge may not agree, resulting in a loss of the
SEM’s mimetic properties. Here we present a map which avoids this issue by using
a map local to each element. The map uses a bilinear transformation based on ele-25

ments’ physical coordinates and does not make use of an inscribed cube. It is similar
to the map used for triangular elements in Lauter et al. (2008).
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For each quadrilateral element Ωm on the surface of the unit sphere, we denote the
map and its inverse by r (x;m) and x(r ;m), where x = (x1,x2). To construct r (x;m), let
c1, c2, c3, and c4 be Cartesian coordinates of the vertices of Ωm with c1 = (cx

1 ,cy
1,cz

3)T,
etc. and define

r = r̃/‖r̃‖25

with

r̃ =
1
4

((1−x1)(1−x2)c1 + (1+x1)(1−x2)c2 + (1+x1)(1+x2)c3 + (1−x1)(1+x2)c4) .

We now give an analytical expression for D = ∂r/∂x needed in Sect. 2. We use both10

Cartesian and longitude-latitude coordinates:

r =

cosλcosθ
sinλcosθ

sinθ

where λ ∈ [0,2π], θ ∈ [−π/2,π/2]. (A1)

Since dr = cosθ dλ eλ +dθ eθ, it follows that

D =
(

cosθ 0
0 1

)
∂(λ,θ)

∂x
=
(

cosθ 0
0 1

)
∂(λ,θ)

∂r
∂r
∂x

. (A2)15

To avoid the singularity at the poles in the term(
cosθ 0

0 1

)
∂(λ,θ)

∂r
=
(
−sinλ cosλ 0

0 0 1
cosθ

)
we further decompose the term ∂r

∂x = ∂r
∂r̃

∂r̃
∂x so that we can extract a factor of cosθ from20

∂r
∂r̃ . Some algebra shows

∂r
∂r̃

=
1

||r̃ ||2

sin2λcos2θ+ sin2θ −1
2 sin2λcos2θ −1

2 cosλsin2θ
−1

2 sin2λcos2θ cos2λcos2θ+ sin2θ −1
2 sinλsin2θ

−1
2 cosλsin2θ −1

2 sinλsin2θ cos2θ
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and

∂r̃
∂x

=
1
4

cx
1 cx

2 cx
3 cx

4
cy

1 cy
2 cy

3 cy
4

cz
1 cz

2 cz
3 cz

4



−1+x2 −1+x1

1−x2 −1−x1
1+x2 1+x1

−1−x2 1−x1

 .

All together, we have

D =
1

||r̃ ||2
1
4

(
−sinλ cosλ 0

0 0 1

)
5

·

sin2λcos2θ+ sin2θ −1
2 sin2λcos2θ −1

2 cosλsin2θ
−1

2 sin2λcos2θ cos2λcos2θ+ sin2θ −1
2 sinλsin2θ

−cosλsinθ −sinλsinθ cosθ



·

cx
1 cx

2 cx
3 cx

4
cy

1 cy
2 cy

3 cy
4

cz
1 cz

2 cz
3 cz

4



−1+x2 −1+x1

1−x2 −1−x1
1+x2 1+x1

−1−x2 1−x1

 ,

where

r̃ =
1
4

cx
1 cx

2 cx
3 cx

4
cy

1 cy
2 cy

3 cy
4

cz
1 cz

2 cz
3 cz

4




(1−x1)(1−x2)
(1+x1)(1−x2)
(1+x1)(1+x2)
(1−x1)(1+x2)

 .10
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Table 1. Summary of the ×2, ×4 and ×8 family of grids.

name ∆xlow ∆xhigh refinement connectivity

deg3-×2-lowconn 3◦ 1.5◦ ×2 low-connectivity
deg1.5-×2-lowconn 1.5◦ 0.75◦ ×2 low-connectivity
deg1-×2-lowconn 1◦ 0.5◦ ×2 low-connectivity
deg0.75-×2-lowconn 0.75◦ 0.375◦ ×2 low-connectivity
deg0.5-×2-lowconn 0.5◦ 0.25◦ ×2 low-connectivity
deg3-×4-lowconn 3◦ 0.75◦ ×4 low-connectivity
deg1.5-×4-lowconn 1.5◦ 0.375◦ ×4 low-connectivity
deg1-×4-lowconn 1◦ 0.25◦ ×4 low-connectivity
deg0.5-×4-lowconn 0.5◦ 0.125◦ ×4 low-connectivity
deg3-×8-lowconn 3◦ 0.375◦ ×8 low-connectivity
deg1.5-×8-lowconn 1.5◦ 0.1875◦ ×8 low-connectivity
deg1-×8-lowconn 1◦ 0.125◦ ×8 low-connectivity
deg3-×8-highconn 3◦ 0.375◦ ×8 high-connectivity
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Table 2. Summary for simulations. TC stands for a test case, numbers c0 and s are parameters
in the hyperviscosity coefficient ν = c0(∆x)s.

TC grid HV method c0 s ∆t figure

TC2 uniform, 3◦ constant-coef. 6.12×10−6 4 50 s Fig. 6a
TC2 deg3-×8-highconn scalar 6.52×10−6 4 30 s Fig. 6b
TC2 deg3-×8-highconn tensor-based 6.12×10−6 4 30 s Fig. 6c
TC2 deg3-×8-lowconn scalar 6.52×10−6 4 30 s Fig. 6d
TC2 deg3-×8-lowconn tensor-based 6.12×10−6 4 30 s Fig. 6e
TC5 uniform, 3◦ constant-coef. 7.18×10−2 3.2 50 s Fig. 10a
TC5 deg3-×8-highconn scalar 7.18×10−2 3.2 20 s Figs. 9b, 10b
TC5 deg3-×8-lowconn tensor-based 3.59×10−2 3.2 50 s Figs. 9c, 10c
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Fig. 1. A cubed-sphere grid

28

Figure 1. A cubed-sphere grid.
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Fig. 2. Schematic idea of constructing refined grids for conforming quadrilaterals on a sphere:
We start from uniform grid with ∆xlow. Next, the region of desired refinement is replaced with
uniform elements of size ∆xhigh. The grey area approximately defines a transition region which
is constructed by substituting quadrilaterals with ∆xlow by transition templates. After transition
region is assembled, spring dynamics can be used to smooth the grid.

29

Figure 2. Schematic idea of constructing refined grids for conforming quadrilaterals on
a sphere: We start from uniform grid with ∆xlow. Next, the region of desired refinement is re-
placed with uniform elements of size ∆xhigh. The grey area approximately defines a transition
region which is constructed by substituting quadrilaterals with ∆xlow by transition templates.
After transition region is assembled, spring dynamics can be used to smooth the grid.
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(a) ∆xlow = 3◦ (b) ∆xlow = 1.5◦ (c) ∆xlow = 0.75◦

Fig. 3. A family of x2 grids with, from left to right, ∆xlow = 3◦, 1.5◦, and 0.75◦, ∆xhigh = ∆xlow/2

(a) Grid with a narrow, more distorted transition region from CUBIT

mesh generation software with grid smoothing turned off

(b) Grid with a wider, more uniform transition region from SQuadGen

and grid smoothing with spring dynamics

Fig. 4. Example x8 Refined grids with ∆xlow = 3◦, ∆xhigh = ∆xlow/8

20

Fig. 3. A family of x2 grids with, from left to right, ∆xlow = 3◦, 1.5◦, and 0.75◦, ∆xhigh = ∆xlow/2

30

Figure 3. A family of ×2 grids with, from left to right, ∆xlow = 3◦, 1.5◦, and 0.75◦, ∆xhigh =
∆xlow/2.
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(a) ∆xlow = 3◦ (b) ∆xlow = 1.5◦ (c) ∆xlow = 0.75◦

Fig. 3. A family of x2 grids with, from left to right, ∆xlow = 3◦, 1.5◦, and 0.75◦, ∆xhigh = ∆xlow/2

(a) Grid with a narrow, more distorted transition region from CUBIT

mesh generation software with grid smoothing turned off

(b) Grid with a wider, more uniform transition region from SQuadGen

and grid smoothing with spring dynamics

Fig. 4. Example x8 Refined grids with ∆xlow = 3◦, ∆xhigh = ∆xlow/8

20

Fig. 4. Example x8 Refined grids with ∆xlow = 3◦, ∆xhigh = ∆xlow/8

31

Figure 4. Example ×8 refined grids with ∆xlow = 3◦, ∆xhigh = ∆xlow/8.
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(a) CUBIT approach (b) SQuadGen approach

Fig. 5. Different types of refined conforming quadrilateral grids. Plots (a) and (b) show a closeups of the

transition regions from plots Fig. 4(a) and Fig. 4(b) respectively

21

Fig. 5. Different types of refined conforming quadrilateral grids. Plots (a) and (b) show a close-
ups of the transition regions from plots Fig. 4(a) and Fig. 4(b) respectively

32

Figure 5. Different types of refined conforming quadrilateral grids. Plots (a) and (b) show
a closeups of the transition regions from plots Fig. 4a and b respectively.
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Figure 6. Error plots for TC2. A contour spacing of 0.25 m is the same for all plots. Maximum
and minimum values of error Eq. (14) are given in captions. Tensor hyperviscosity produces
smoother fields comparing to scalar hyperviscosity, as follows from comparing pairs (b), (c)
and (d), (e). In addition, the quality of the underlying grid significantly improves the outcome
around the refined region when using scalar hyperviscosity, as seen by comparing (b) and (d).
Contrary to scalar hyperviscosity, tensor hyperviscosity is more robust with respect to mesh
quality, as follows from comparing (c) and (e). Simulations (c) and (e) with tensor hyperviscosity
also exhibit a substantial error reduction in the vicinity of the refinement compared to the coarse
uniform resolution in (a).
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(a) Coarse resolution solution using a uniform grid with

∆x = 3◦

(b) High resolution reference solution, using a uniform

grid with ∆x = 0.125◦

Fig. 7. TC5 vorticity contours for low and high uniform resolutions with constant coefficient hyperviscosity.

The contour spacing is 5.0×10−6s−1. A spherical mountain approximately 30◦ in diameter is centered at 30N,

90W.

(a) Coarse resolution solution with ∆x = 3◦. (b) High resolution reference solution, using a uniform

grid with ∆x = 0.125◦.

Fig. 8. As in Fig. 7 but plotted in a subregion of the global domain.

23

Fig. 7. TC5 vorticity contours for low and high uniform resolutions with constant coefficient
hyperviscosity. The contour spacing is 5.0× 10−6s−1. A spherical mountain approximately 30◦

in diameter is centered at 30N, 90W.

36

Figure 7. TC5 vorticity contours for low and high uniform resolutions with constant coefficient
hyperviscosity. The contour spacing is 5.0×10−6 s−1. A spherical mountain approximately 30◦

in diameter is centered at 30◦ N, 90◦ W.
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(a) Coarse resolution solution using a uniform grid with

∆x = 3◦

(b) High resolution reference solution, using a uniform

grid with ∆x = 0.125◦

Fig. 7. TC5 vorticity contours for low and high uniform resolutions with constant coefficient hyperviscosity.

The contour spacing is 5.0×10−6s−1. A spherical mountain approximately 30◦ in diameter is centered at 30N,

90W.

(a) Coarse resolution solution with ∆x = 3◦. (b) High resolution reference solution, using a uniform

grid with ∆x = 0.125◦.

Fig. 8. As in Fig. 7 but plotted in a subregion of the global domain.

23

Fig. 8. As in Fig. 7 but plotted in a subregion of the global domain.

37

Figure 8. As in Fig. 7 but plotted in a subregion of the global domain.
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(a) Scalar hyperviscosity with the highly distorted x8

grid shown in Fig. 4(a).

(b) Tensor hyperviscosity with the low connectivity x8

grid shown in Fig. 4(b).

(c) The highly distorted grid used in (a) (d) The low connectivity grid used in (b)

Fig. 9. Contour plots of TC5 vorticity are shown in the top panels while the grid is shown in the bottom panel.

The contour interval is 5.0× 10−6s−1. All panels show a subregion of the global domain which contains

most of the refined region and is identical to the subregion used in Fig 8. Panel (a) shows results using scalar

hyperviscosity on the highly distorted grid shown in (c). Panel (b) shows results using tensor hyperviscosity on

the low connectivity grid shown in (d). The improved hyperviscosity and mesh quality result in significantly

improved results.

24

Fig. 9. Contour plots of TC5 vorticity are shown in the top panels while the grid is shown in the
bottom panel. The contour interval is 5.0× 10−6s−1. All panels show a subregion of the global
domain which contains most of the refined region and is identical to the subregion used in Fig 8.
Panel (a) shows results using scalar hyperviscosity on the highly distorted grid shown in (c).
Panel (b) shows results using tensor hyperviscosity on the low connectivity grid shown in (d).
The improved hyperviscosity and mesh quality result in significantly improved results.
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Figure 9. Contour plots of TC5 vorticity are shown in the top panels while the grid is shown
in the bottom panel. The contour interval is 5.0×10−6 s−1. All panels show a subregion of the
global domain which contains most of the refined region and is identical to the subregion used
in Fig. 8. Panel (a) shows results using scalar hyperviscosity on the highly distorted grid shown
in (c). Panel (b) shows results using tensor hyperviscosity on the low connectivity grid shown
in (d). The improved hyperviscosity and mesh quality result in significantly improved results.
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Figure 10. The error in the TC5 vorticity field is plotted for the global domain. The color scheme
given in (a) is the same for all plots. The tensor hyperviscosity again produces the best results
with very little noise.
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Fig. 11. TC2 l2 errors for uniform and low-connectivity grids plotted as a function of ∆xlow. The
solid line shows 4th order convergence. The error is controlled by the coarse region ∆xlow and
the SEM obtains its formal order of accuracy (4th order for p= 3) with respect to ∆xlow. This
is true for both uniform grids (blue squares and blue stars) and grids containing mesh refined
regions with ∆xhigh = ∆xlow/2 (x2 family shown as red diamonds), ∆xhigh = ∆xlow/4 (x4 family,
shown as red plus marks) and ∆xhigh = ∆xlow/8 (x8 family, shown as black squares). All curves
are practically indistinguishable.
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Figure 11. TC2 l2 errors for uniform and low-connectivity grids plotted as a function of ∆xlow.
The solid line shows 4th order convergence. The error is controlled by the coarse region ∆xlow
and the SEM obtains its formal order of accuracy (4th order for p = 3) with respect to ∆xlow. This
is true for both uniform grids (blue squares and blue stars) and grids containing mesh refined
regions with ∆xhigh = ∆xlow/2 (×2 family shown as red diamonds), ∆xhigh = ∆xlow/4 (×4 family,
shown as red plus marks) and ∆xhigh = ∆xlow/8 (×8 family, shown as black squares). All curves
are practically indistinguishable.
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Fig. 12. As in Fig. 11, except for TC5. In case of tensor-based hyperviscosity, three error curves
for grid refinement with x2, x4 or x8 local refinement are practically indistinguishable and obtain
the same convergence rates as seen with uniform grids. For a given ∆xlow, the presence of
some local refinement (x2) does decrease the global error, but x4 or x8 levels of local refinement
produce no further benefit.
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Figure 12. As in Fig. 11, except for TC5. In case of tensor-based hyperviscosity, three error
curves for grid refinement with ×2, ×4 or ×8 local refinement are practically indistinguishable
and obtain the same convergence rates as seen with uniform grids. For a given ∆xlow, the
presence of some local refinement (×2) does decrease the global error, but ×4 or ×8 levels of
local refinement produce no further benefit.
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